Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique.
نویسندگان
چکیده
This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Nano-scratches were performed on plasma sprayed hydroxyapatite (HA) and HA-CNT coatings to quantify the adhesion of the osteoblast. The presence of CNTs in HA coating promotes an increase in the adhesion of osteoblasts. The adhesion force and energy of an osteoblast on a HA-CNT surface are 17 ± 2 µN/cell and 78 ± 14 pJ/cell respectively, as compared to 11 ± 2 µN/cell and 45 ± 10 pJ/cell on a HA surface after 1 day of incubation. The adhesion force and energy of the osteoblasts increase on both the surfaces with culture periods of up to 5 days. This increase is more pronounced for osteoblasts cultured on HA-CNT. Staining of actin filaments revealed a higher spreading and attachment of osteoblasts on a surface containing CNTs. The affinity of CNTs to conjugate with integrin and other proteins is responsible for the enhanced attachment of osteoblasts. Our results suggest that the addition of CNTs to surfaces used in medical applications may be beneficial when stronger adhesion of osteoblasts is desired.
منابع مشابه
Investigation of osteoblast-like cells cultured on nano-hydroxyapatite/chitosan based composite scaffold in the treatment of bone defects and limited mobility
Objective(s): Design and construction of biocompatible and biodegradable scaffolds are among the main goals of tissue engineering. Recently, use of nano-hydroxyapatite as a bioactive bioceramic agent with high similarity to the mineral phase of the human bone tissue, in combination with biodegradable polymers and implant coatings has attracted the attention of researchers in the field of biomat...
متن کاملElectrophoretic Deposition of Microwave Combustion Synthesized Hydroxyapatite and Its Carbon Nanotube Reinforced Nanocomposite on 316L Stainless Steel
Nanohydroxyapatite-carbon nanotube Nanocomposite (HA-CNT) coatings were deposited via electrophoretic deposition (EPD). Hydroxyapatite was synthesized via microwave combustion method using calcium nitrate and glycing as starting materials. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that pure hydroxyapatite nanoparticles have been synthesized. AISI 316L s...
متن کاملتهیه نانوکامپوزیت هیدروکسی آپاتیت- نانولوله کربنی به روش سنتز درجا و بررسی مورفولوژی و ریزساختار آن
In the present study, in-situ synthesis of carbon nanotube/hydroxyapatite nano composite powder with stable homogeneous dispersions of carbon nanotubes (CNTs) was carried out using surfactant as dispersing agent. By applying sol-gel method, dispersion in the hydroxyapatite matrix and its effects on the microstructure were investigated. The chemical and phase composition, structure and morpholo...
متن کاملNumerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate
The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...
متن کاملEffects of MWCNTs Dispersion on the Microstructure of Sol-Gel Derived Hydroxyapatite
Stable homogeneous dispersions of carbon nanotubes (CNTs) were prepared using ethanol as dispersing agent. Then, using sol-gel method, dispersion in the hydroxyapatite matrix and its effects on the microstructure were investigated. The phase composition, chemical structure and morphological and size analyses were performed using XRD, FT-IR, SEM, TEM/SAED/EDX and Raman spectroscopy. The influenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 22 35 شماره
صفحات -
تاریخ انتشار 2011